Name:	Answer	Key		
	Last	0	First	MI

Chemistry 233 Exam 1

Fall 2016

Dr. J. Osbourn

<u>Instructions:</u> The first 13 questions of this exam should be answered on the provided Scantron. You must use a pencil for filling in the Scantron sheet. Ensure all erasures are complete. Any questions left blank will be marked incorrect. Any question with multiple answers selected will be marked incorrect. Answer the remaining questions on the exam itself. Show all work and provide complete explanations.

Please write your name on:

- The Exam Cover Page
- The Second Grading Page
- The Scantron Sheet

Please bubble in your WVU Student ID Number on your Scantron sheet.

The Periodic Table

1 IA 1	1																18 VIIIA
H	2											13	14	15	16	17	He
1.01	IIA 4	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	l										5	6	7	8	9	10
6.94	9.01											B 10.81	C 12.01	N 14.01	16.00	F	Ne
11	12	1										13	14	14.01	16.00	19.00 17	20.18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	HB	26,98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50,94	52.00	54.94	55,85	58,93	58.69	63.55	65.39	69,72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ľ	Xe
85.47	87.62	88.91	91.22	92.91	95,94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 137.3	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
87	88	138.9 89	178.5 104	180.9 105	183,9 106	186.2 107	190.2 108	192.2 109	195.1 110	197.0 111	200.6	204.4	207.2	209	(209)	(210)	(222)
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds								
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	Rg (272)							
(====)	(325)	(==1)	1.0017	(204)	(203)	(204)	(202)	(200)	(2/1)	(2/2)	ı						
			58	59	60	61	62	. 63	64	65	66	67	68	69	70	71	
		*	Ce	Pr	Nd	Pm	Sm	En	Gd	Tb	Dy	Ho	Er	Tm	YЪ	Lu	
			140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		^	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		-	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	

Exams will be returned by placing them alphabetically on the table at the front of Clark 101. Your grade will not be visible as it is on the second page. If, however, you have a privacy concern, check the box below and your exams will be held back so that you can pick them up privately.

1 1	Hold	Back	My	Exams
-----	------	------	----	-------

Name:		
Last	First	MI

Grading Page (Exam 1):

Page	Points Possible	Points Earned
Multiple Choice (3-5)	26	
6	18	
7	18	
8	21	
9	17	
TOTAL	100	

Multiple Choice

Choose the one best answer for each of the following questions. Using a pencil, record this answer on the Scantron provided. (2 points each)

1. The approximate p K_a values for protons **A** and **B** are 35 and 44, respectively.

- a. 10,44
- b. 25,50
- (c.) 35, 44
- d. 10, 25
- e. 35,50

2. What is the condensed formula for the structure below?

- a. (CH₃)₂CHCHClCH(CH₃)₂
- b. CH₃CH(CH₃)CHClCH(CH₃)₂
- (c.) (CH₃)₂CHCHClC(CH₃)₃
- d. (CH₃)₃CCHClCH(CH₃)₃

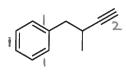
3. What is the formal charge on the oxygen atom in the structure below?

- a. -1
- b. 0
- (c.) +1

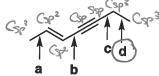
4. The H-C-H bond angle in methane is closest to

- a. 90°
- (b.) 109.5°
- c. 120°
- d. 180°

5. Which structure below is classified as an allylic carbocation?

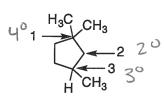


both b & c


6. What is the hybridization of the nitrogen atom in the molecule below?

1 bond 2 lone pairs = 3 groups = Sp2 (db)

- a. s
- b. sp
- c. sp^3
- (d.) sp²
- e. p
- 7. How many π -bonds are present in the structure below?


- a. One
- b. Three
- c. Four
- (d.) Five
- e. Six
- 8. Which one of the indicated C-C single bonds is the longest?

9. Which species below would you expect to be the strongest base? Hint: Think about the acidity of the conjugate acids.

 $CH_3\ddot{S}H$ $CH_3\ddot{N}H_2$ $CH_3\ddot{O}H$ $CH_3\ddot{S}eH$

10. Carbons 1, 2, and 3 in the following structure are classified, respectively, as:



- a. tertiary, primary, secondary
- b. quaternary, primary, secondary
- c. quaternary, secondary, quaternary
- d. quaternary, primary, tertiary
- (e.) quaternary, secondary, tertiary

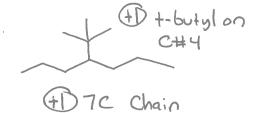
11. What is the relationship between the two structures below?

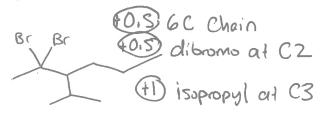
CsHio and CsHio Same formula, different atom Connectivity

- a. Identical structures
- b. Resonance forms
- c. Constitutional isomers
- d. None of the above
- 12. Which species below contains an amide functional group?

13. What type of orbital overlap is involved in the indicated bond?

- a. $C_{sp}-C_{sp}$
- b C_{sp3}-C_{sp}
- C. C_{sp3} - C_p
- d. C_{sp2} - C_{sp}
- e. None of the above

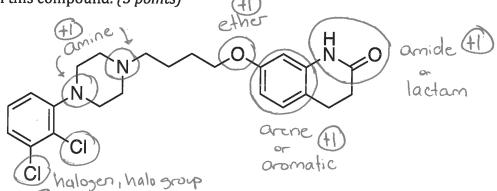

Completion Section


Answer the remaining questions in the spaces provided. Show all work and provide complete explanations.

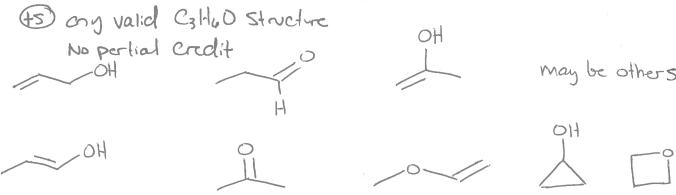
(4) 14. Provide IUPAC systematic names for each of the following compounds. (3 points each)

- (4) 15. Convert the following IUPAC Names into skeletal structures. (2 points each)
 - a. 4-(1,1-dimethylethyl)heptane

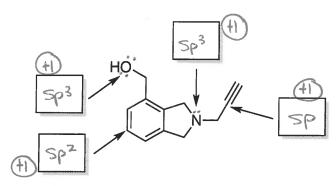
b. 2,2-dibromo-3-isopropylhexane

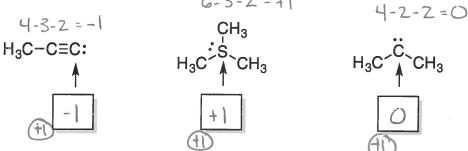


16. Below is the structure of abilify, an antipsychotic drug. Circle and identify five (5) different functional groups in this compound. (5 points)

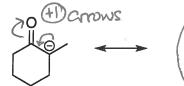

Chloride, or Chlorograp

For amine and Chloride, only one needs to


be circled.


(5) 17. Draw a valid uncharged Lewis structure or skeletal structure for a compound with the molecular formula C₃H₆O. *Hint: Check octets! (5 points)*

(4) 18. For the compound below, predict the hybridization for each of the indicated atoms. (4 points)


(3) 19. Determine the formal charge for each of the indicated atoms below. All atoms and lone pairs are already drawn in for you. (1 point each)

20. Consider the molecule below and answer the following questions.

- a. In what type of orbital to the lone pairs in oxygen a reside? (2 points)
- **b.** What is the geometry at **carbon b**? (2 points)
- trisonal planer (2) c. What is the bond angle around oxygen c? (2 points)

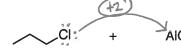
- (12) 21. For each structure shown below, complete the following: (12 points)
 - Draw all resonance structures. (2 pts)
 - Use curved arrows to show electron flow. (1 pt)
 - Circle the "best" resonance structure (the major contributor to the resonance hybrid). (1 pt)

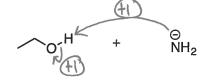
(+Deircled

Circled

C.

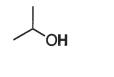
22. Convert the condensed structure below to a skeletal structure. (2 points) CH₃(CH₂)₃CH(Cl)CH₃

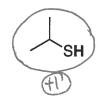



no pertial Credit

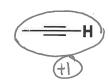
(3) 23. Convert the skeletal structure below to a condensed structure. (3 points)

(CH3)3C (CH2)40H


(4) 24. For each reaction shown below, add in curved arrows to the reactants to show electron flow. Hint: it may help to draw in lone pair electrons. (2 points each)



 NH_3


(9) 25. For each pair, circle the compound that is most acidic. Include a brief (one sentence or less) explanation for each choice. (3 points each)

S is larger than O

Csp-H more acidic than Csp2-H

VS H₃C OH Chlorines Stabilize the conjugate base via the inductive effect.

26. For each acid/base reaction below: 1. Draw the correct products; 2. Label the acid (A), base (B), conjugate acid (CA), and conjugate base (CB); 3. Circle the set of equilibrium arrows that best represents the direction in which the reaction lies. (4 points each)

(+1) Correct labels

CB

b.

(1) Correct labels